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a b s t r a c t

In this paper, an efficient algebraic method for the computation of eigensolution

derivatives of asymmetric damped systems with distinct eigenvalues is presented. By

introducing an additional and new normalization condition, we construct two extended

systems of linear equations with nonsingular coefficient matrices which are transpose

to each other. We can compute the derivatives of the eigenvalues and their associated

right and left eigenvectors by solving the two systems, respectively. In this way, the CPU

computation time and the storage space are considerably reduced. Finally, a numerical

example is included to demonstrate the validity of the proposed method.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Because of the increasing importance of the derivatives of eigenvalues and eigenvectors in structural design
optimization, damage detection, structural dynamic modification and other applications [1], many methods have been
developed to compute the eigensolution sensitivities with respect to system parameters. The computation of the
derivatives of eigenvalues of a mechanical system is well documented, but the calculation of derivatives of the
corresponding eigenvectors requires the solution of singular problems. Further difficulties appear in computation of
eigensolution sensitivities for asymmetric damped systems where the left and right eigenvectors are different and
complex, and require an additional normalization condition for the relative scaling of eigenvectors.

The common approaches for the calculation of derivatives of eigenvectors can be divided into the modal method,
Nelson’s method and the algebraic methods. The modal method employs a modal superposition idea. In 1968, Fox and
Kapoor [2] first gave exact expressions of the first-order derivative of eigensolutions for symmetric undamped systems by
using the modal expansion technique. Plaut and Huseyin [3] extended this method to asymmetric damped systems using
2N-space formulation where N is the system dimension. Adhikari and Friswell [4] applied the modal method to asymmetric
nonconservative systems using N-space formulation. Note that the accuracy of the modal method is dependent on the
number of modes used in calculation. To guarantee the accurate sensitivities, the modal method needs all of the modes.
However, it is often difficult to obtain all the modes. Generally, only the partial modes are computed and are used as the
basis vectors of eigenvector derivatives. A significant error will yield if a large number of modes are truncated. Wang [5]
improved the modal truncation method by using a residual static mode to approximate the contribution due to unavailable
high-frequency modes. Zeng [6] presented modified modal methods such as the multiple modal acceleration methods with
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shifted-poles for the complex eigenvectors in symmetric viscous damping systems. Furthermore, by combining the modal
method in [4] and the modal acceleration with shifted-poles in [6], Moon et al. [7] presented the modified modal methods
for asymmetric damped systems. In 1976, Nelson [8] proposed a method to calculate the first-order derivatives of
eigenvectors with distinct eigenvalues for the general real eigensystems. In contrast to the modal method, the Nelson’s
method requires only the eigenvalue and eigenvector under consideration. Unfortunately, the method cannot directly be
used for the case of repeated eigenvalues. Ojalvo [9], Mills-Curran [10], Dailey [11] and Wu et al. [12] developed Nelson’s
method for solving the first-order derivatives of eigensolutions of structures with repeated eigenvalues for symmetric
undamped systems. Shaw and Jayasuriya [13] extended the method in Refs. [9–11] for computing the derivatives of
eigensolutions in the case of repeated eigenvalues with repeated first-order derivatives. For symmetric and asymmetric
damped systems, Friswell and Adhikari [14] and Guedria et al. [15] generalized Nelson’s method [8] to calculate the first-
order and second-order eigenvector derivatives, respectively. However, the methods in Refs. [14,15] have been developed
for the systems with distinct eigenvalues only. A review on calculating the eigensolution derivatives of a general real
eigensystems with distinct eigenvalues was given by Murthy and Haftka [16]. Tang et al. [17,18] investigated the
eigensolution derivatives with repeated eigenvalues for general asymmetric eigensystems. Lee et al. [19] derived an
algebraic method to compute the first-order derivatives of eigensolutions for symmetric undamped systems with distinct
eigenvalues. Later, Lee et al. [20] and Choi et al. [21] generalized the algebraic methods to symmetric damped systems. The
methods in Refs. [19–21] preserved the symmetry of the original eigensystem. Garg [22], Rudisill [23], Rudisill and Chu [24]
investigated the algebraic methods for general asymmetric eigensystems, however, as pointed out by Murthy and Haftka
[16], the normalization conditions adopted in Refs. [22–24] were not always valid. Recently, Guedria et al. [25] presented an
algebraic method for computing simultaneously the first-order derivatives of the eigenvalues and their associated right and
left eigenvectors for asymmetric damped systems by solving a system of 2N+1 linear equations. The methods in Refs.
[19–25] have been developed for the systems with distinct eigenvalues only. Lee et al. [26,27] and Choi et al. [28] further
generalized their algebraic methods to the case of repeated eigenvalues, but these generalizations were not correct since a
mistake was made in the derivation of equations on derivatives of the normalization condition [29].

In this paper, we present an efficient algebraic method for the computation of eigensolution derivatives of asymmetric
damped systems with distinct eigenvalues. By introducing an additional and new normalization condition, we construct
two extended systems of N+1 linear equations with nonsingular coefficient matrices which are transpose to each other. We
can then compute the derivatives of the eigenvalues and their associated right and left eigenvectors by solving the two
systems, respectively. The proposed method requires only the eigenvalues and eigenvectors under consideration, gives
exact solution and guarantees numerical stability. Compared with the method in Ref. [25], the CPU computation time and
the storage space are significantly reduced, thus it is more efficient. In addition, the method can be extended to compute
higher order eigensolution derivatives with less computing effort. A numerical example is used to illustrate the validity of
the proposed method.
2. Theoretical background

The equations of motion describing the free vibration of a linear, damped discrete system with N degrees of freedom are

MðpÞ €qðtÞ þ CðpÞ _qðtÞ þ KðpÞqðtÞ ¼ 0 (1)

where M(p), C(p) and KðpÞ 2 RN�N are the mass, damping and stiffness matrices, respectively, whose elements depend
continuously on the real parameter p, and are asymmetric matrices, and M(p) is nonsingular, qðtÞ 2 RN is the vector of
generalized coordinates and t 2 Rþ denotes time.

The eigenvalues associated with Eq. (1) are the roots of the characteristic polynomial

det½l2
ðpÞMðpÞ þ lðpÞCðpÞ þ KðpÞ� ¼ 0 (2)

The order of the polynomial is 2N and the roots appear in complex conjugate pairs for an underdamped system

l1ðpÞ; l2ðpÞ; . . . ; lNðpÞ; l
�
1ðpÞ; l

�
2ðpÞ; . . . ; l

�
NðpÞ (3)

where * denotes complex conjugate. These eigenvalues are assumed to be distinct.
The right eigenvalue problem associated with Eq. (1) can be represented by the l-matrix problem [30]

½l2
i ðpÞMðpÞ þ liðpÞCðpÞ þ KðpÞ�uiðpÞ ¼ 0; i ¼ 1;2; . . . ;N (4)

where liðpÞ 2 C is the ith eigenvalue and uiðpÞ 2 CN is the ith right eigenvector. Similarly, the left eigenvalue problem can be
written as

½l2
i ðpÞMðpÞ þ liðpÞCðpÞ þ KðpÞ�TwiðpÞ ¼ 0; i ¼ 1;2; . . . ;N (5)

where wiðpÞ 2 CN is the ith left eigenvector.
We can easily obtain the right and left eigenvectors from a first-order formulation, for example, the state-space method

[31] or Duncan forms [32]. Introducing state variables uðtÞ ¼ ½qTðtÞ; _qT
ðtÞ�T, Eq. (1) is transformed into the first-order
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(Duncan) form as

AðpÞuðtÞ ¼ BðpÞ _uðtÞ (6)

where A(p), BðpÞ 2 R2N�2N are the first-order system matrices given by

AðpÞ ¼
�KðpÞ 0

0 MðpÞ

" #
; BðpÞ ¼

CðpÞ MðpÞ

MðpÞ 0

" #
(7)

Then, the right and left eigenvalue problems associated with Eq. (6) can be represented by

AðpÞxiðpÞ ¼ liðpÞBðpÞxiðpÞ (8a)

AT
ðpÞyiðpÞ ¼ liðpÞB

TðpÞyiðpÞ; i ¼ 1;2; . . . ;2N (8b)

where liðpÞ 2 C is the ith eigenvalue and xiðpÞ, yiðpÞ 2 C2N are the ith right and left eigenvectors of the first-order system,
respectively, which are related to the ith right and left eigenvectors of the second-order system by

xiðpÞ ¼
uiðpÞ

liðpÞuiðpÞ

( )
; yiðpÞ ¼

wiðpÞ

liðpÞwiðpÞ

( )
(9)

For distinct eigenvalues it is easy to show that the right and left eigenvectors satisfy the following biorthogonal
relationship:

yT
i ðpÞAðpÞxjðpÞ ¼ 0 and yT

i ðpÞBðpÞxjðpÞ ¼ 0; 8iaj (10)

As M(p) is nonsingular, then the right and left eigenvectors may be normalized to satisfy

yT
i ðpÞBðpÞxiðpÞ ¼ 1; i ¼ 1;2; . . . ;2N (11)

Substituting xiðpÞ and yiðpÞ in Eq. (9) into Eq. (11) yields the following relationship in terms of the eigensolutions of the
second-order system:

wT
i ðpÞ½2liðpÞMðpÞ þ CðpÞ�uiðpÞ ¼ 1; i ¼ 1;2; . . . ;N (12)

The normalization in Eq. (12) is insufficient and the eigenvectors are not unique to the extent of a nonzero complex factor.
This point can be demonstrated by multiplying the left eigenvector by any nonzero scalar and dividing the right eigenvector
by the same scalar. So an additional normalization condition should be imposed to yield unique eigenvectors.

The paper is concerned with the derivatives of eigenvalues and associated right and left eigenvectors at p ¼ p0, and
hereafter ‘‘(p0)’’ is omitted for variables evaluated at p ¼ p0. Let ui be an arbitrarily chosen right eigenvector associated with
the eigenvalue li at p ¼ p0. The associated left eigenvector wi can uniquely be determined by using Eq. (12) with p ¼ p0. For
p ¼ p0 and p near p0, we propose the following additional normalization condition for the right eigenvector ui(p):

lT
i uiðpÞ ¼ 1; i ¼ 1;2; . . . ;N (13)

where li is given by

li ¼ ð2liMþ CÞTwi (14)

It should be noted that li in Eq. (14) is a constant complex vector evaluated at p ¼ p0 and does not vary with the design
parameter p. Once the right eigenvector ui at p ¼ p0 is selected, the eigenvalue li(p) and associated right eigenvector ui(p)
for p near p0 can uniquely be determined by utilizing Eqs. (4) and (13). This point can be shown as follows. Consider the
system of equations (4) and (13). For p ¼ p0, (ui, li) is a solution to this system and the associated Jacobian matrix is

Jðp0Þ ¼
l2

i Mþ liCþ K ð2liMþ CÞui

wT
i ð2liMþ CÞ 0

2
4

3
5 (15)

Assume J(p0)U ¼ 0, for some U ¼ ½qT r�T 2 CNþ1. That is

ðl2
i Mþ liCþ KÞqþ rð2liMþ CÞui ¼ 0 (16a)

wT
i ð2liMþ CÞq ¼ 0 (16b)

Premultiplying Eq. (16a) by wT
i and using Eqs. (5) and (12) with p ¼ p0 leads to r ¼ 0. Substituting the result into Eq. (16a)

yields

ðl2
i Mþ liCþ KÞq ¼ 0 (17)

Using Eq. (4) with p ¼ p0, the solution to Eq. (17) can be expressed by

q ¼ cui (18)
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where c is a complex number. Substituting Eq. (18) into Eq. (16b) and using Eq. (12) with p ¼ p0 yields c ¼ 0, and thus q ¼ 0.
Therefore, equation J(p0)U ¼ 0 has solution U ¼ 0 only and the Jacobian matrix in Eq. (15) is nonsingular. Now the implicit
function theorem indicates that Eqs. (4) and (13) have unique solution li(p) and ui(p) for each p near p0. Thus the adopted
additional and new normalization condition in Eq. (13) for the right eigenvector is valid. Using the ui(p) above and utilizing
Eqs. (5) and (12), we can uniquely determine the left eigenvector wi(p) associated with li(p) for each p near p0. We can then
calculate the derivatives of eigenvalues and associated right and left eigenvectors at p ¼ p0. Note that these derivatives are
computed by choosing an arbitrarily right eigenvector associated the eigenvalue li at p ¼ p0, which is one of advantages of
the proposed method.

In next section, we will present an efficient algebraic method for computing the first and second-order eigensolution
derivatives in N-space.

3. The proposed method

For convenience, we denote the first-order derivative with respect to parameter p by a prime.
Differentiating Eqs. (4) and (13) with respect to the parameter p at p ¼ p0 and rearranging them yields, respectively,

ðl2
i Mþ liCþ KÞu0i þ ð2liMþ CÞuil

0
i ¼ �ðl

2
i M0 þ liC

0
þ K0Þui (19)

and

lT
i u
0
i ¼ 0 (20)

Utilizing Eq. (14) and combining Eqs. (19) and (20) leads to the following system:

l2
i Mþ liCþ K ð2liMþ CÞui

wT
i ð2liMþ CÞ 0

2
4

3
5 u0i

l0i

" #
¼
�ðl2

i M0 þ liC
0
þ K0Þui

0

" #
(21)

As shown in Section 2, the coefficient matrix in Eq. (21) is nonsingular. Thus we can solve Eq. (21) to obtain the eigenvalues
derivatives l0i and associated right eigenvector derivatives /0i.

Similarly, differentiating Eqs. (5) and (12) with respect to the parameter p at p ¼ p0, respectively, and rearranging them
results in

ðl2
i Mþ lCþ KÞTw0i ¼ �ð2liMþ CÞTwil

0
i � ðl

2
i M0 þ liC

0
þ K0ÞTwi (22)

and

w0Ti ð2liMþ CÞui ¼ �wT
i ð2liMþ CÞu0i � 2ðwT

i MuiÞl
0
i �wT

i ð2liM
0 þ C0Þui (23)

Note that the term w0Ti ð2liMþ CÞui is a scalar, thus we have

w0Ti ð2liMþ CÞui ¼ uT
i ð2liMþ CÞTw0i (24)

So, Eq. (23) can be rewritten as

uT
i ð2liMþ CÞTw0i ¼ �wT

i ð2liMþ CÞu0i � 2ðwT
i MuiÞl

0
i �wT

i ð2liM
0 þ C0Þui (25)

We introduce the following extended system of equations with unknowns w0i and m 2 C:

ðl2
i Mþ liCþ KÞT ð2liMþ CÞTwi

uT
i ð2liMþ CÞT 0

2
4

3
5 w0i

m

" #
¼

G

r

� �
(26)

where

G :¼ �ð2liMþ CÞTwil
0
i � ðl

2
i M0 þ liC

0
þ K0ÞTwi (27a)

r :¼ �wT
i ð2liMþ CÞu0i � 2ðwT

i MuiÞl
0
i �wT

i ð2liM
0 þ C0Þui (27b)

Eq. (26) can be expanded into

ðl2
i Mþ lCþ KÞTw0i þ ð2liMþ CÞTwim ¼ G (28a)

uT
i ð2liMþ CÞTw0i ¼ r (28b)

Premultiplying Eq. (28a) by uT
i and using Eqs. (4), (12) and (19) with p ¼ p0 leads to

m ¼ 0 (29)
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from which Eq. (28a) is reduced to Eq. (22), and Eq. (28b) is just Eq. (25). This means that the part w0i of the solution to
Eq. (26) satisfies Eqs. (22) and (25) simultaneously and it is the derivative of the associated left eigenvector calculated at
p ¼ p0.

It should be noted that the coefficient matrices in systems (21) and (26) are not symmetric, but the coefficient matrix of
Eq. (26) is the transpose of that of Eq. (21), thus it is also nonsingular. If l0i and u0i are solved from Eq. (21), then the G and r

on the right-hand side of Eq. (26) are known. Further, we can solve Eq. (26) without performing a new decomposition of its
coefficient matrix to achieve the left eigenvector derivative w0i.

So far we obtain the first-order derivatives l0i, u0i and w0i of eigensolutions.
Furthermore, the proposed method can be extended to calculate higher order derivatives of eigensolutions with less

computing effort. For example, the second-order derivatives of eigensolutions may be found by using the similar procedure
above. Differentiating Eqs. (4), (5), (12) and (13) twice with respect to the parameter p at p ¼ p0, respectively, yields the
following two systems:

l2
i Mþ liCþ K ð2liMþ CÞui

wT
i ð2liMþ CÞ 0

2
4

3
5 u00i

l00i

" #
¼

T

0

� �
(30)

and

ðl2
i Mþ liCþ KÞT ð2liMþ CÞTwi

uT
i ð2liMþ CÞT 0

2
4

3
5 w00i

n

" #
¼

H

s

� �
(31)

where

T :¼ � ðl2
i M00 þ liC

00
þ K00Þui � 2ðl2

i M0 þ liC
0
þ K0Þu0i � 2l0ið2liMþ CÞu0i

� 2l0ið2liM
0 þ C0Þui � 2ðl0iÞ

2Mui (32a)

H :¼ � ðl2
i M00 þ liC

00
þ K00ÞTwi � 2ðl2

i M0 þ liC
0
þ K0ÞTw0i � 2l0ið2liMþ CÞTw0i

� 2l0ið2liM
0 þ C0ÞTwi � 2ðl0iÞ

2MTwi � l00i ð2liMþ CÞTwi (32b)

s :¼ �wT
i ð2liM

00 þ C00Þui � 2w0Ti ð2liM
0 þ C0Þui � 2wT

i ð2liM
0 þ C0Þu0i

� 2w0Ti ð2liMþ CÞu0i � 2l00i w
T
i Mui �wT

i ð2liMþ CÞu00i

� 4l0iw
T
i M0ui � 4l0iw

0T
i Mui � 4l0iw

T
i Mu0i (32c)

Based on the obtained l0i, u
0
i and w0i, the second-order derivatives l00i , u00i and w00i may be evaluated from Eqs. (30) and (31).

Noting that the coefficient matrices in Eqs. (30) and (31) are identical with those in Eqs. (21) and (26), respectively, we need
not factor them once more. The aforementioned procedure may be continued to any higher order eigensolution derivatives.

Finally, it is noted that since the adopted normalization condition is different from the existing other ones, the obtained
eigenvector derivatives are different from those obtained by the existing other methods even if for the same eigenvector at
p ¼ p0, but the eigenvalue derivatives are same, as the eigenvalue derivatives are independent of the selection of
normalization conditions.

4. Discussion

The preceding sections are mainly focused on the asymmetric damped systems. It should be noted that the proposed
method is also applicable to symmetric damped systems. For the latter, the right and left eigenvectors are identical, so we
only need to solve the eigenpair derivatives l0i and u0i, and one of the both normalization conditions (12) with wiðpÞ ¼ uiðpÞ

and (13) with wi ¼ ui is sufficient for the computation of the derivatives.
For symmetric damped systems, the eigenpair derivatives may be obtained by solving Eq. (21) with wi ¼ ui. Here we

have adopted the normalization condition (13) with wi ¼ ui

uT
i ð2liMþ CÞuiðpÞ ¼ 1 (33)

It is obvious that at p ¼ p0 the eigenvector ui is not arbitrary but satisfies Eq. (33) with p ¼ p0 which is different from the
case of asymmetric damped systems.

In addition, we may also obtain the eigenvector derivatives u0i by using Eq. (26). Utilizing the symmetry and rearranging
Eq. (26) yields

l2
i Mþ liCþ K ð2liMþ CÞui

uT
i ð2liMþ CÞ 0

2
4

3
5 u0i

m

" #
¼

G̃

r̃

" #
(34)
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where

G̃ :¼ �ð2liMþ CÞuil
0
i � ðl

2
i M0 þ liC

0
þ K0Þui (35a)

r̃ :¼ �ðuT
i MuiÞl

0
i � 0:5uT

i ð2liM
0 þ C0Þui (35b)

Here we have adopted the usual normalization condition (12) with wiðpÞ ¼ uiðpÞ, i.e.

uT
i ðpÞ½2liðpÞMðpÞ þ CðpÞ�uiðpÞ ¼ 1 (36)

Then the eigenvector derivatives u0i can be obtained by solving Eq. (34) in which the eigenvalue derivatives l0i is given by

l0i ¼ �uT
i ðl

2
i M0 þ liC

0
þ K0Þui (37)

The method has been described in Ref. [20].
Noting m ¼ 0 in the solution to Eq. (34), we may rewrite the equation into the following equivalent form:

l2
i Mþ liCþ K ð2liMþ CÞui

uT
i ð2liMþ CÞ uT

i Mui

2
4

3
5 u0i

l0i

" #
¼
�ðl2

i M0 þ liC
0
þ K0Þui

�0:5uT
i ð2liM

0 þ C0Þui

2
4

3
5 (38)

Thus we can directly get the eigensolution derivatives l0i and u0i by solving Eq. (38). Note that Eq. (38) is identical to that
developed in Ref. [21].

In a word, the proposed method for the asymmetric damped systems can also applicable to symmetric damped systems
discussed in Refs. [20,21].

5. A numerical example

The validity of the proposed method will be demonstrated by the following example.

Example. A finite element rotor dynamic model will be used to demonstrate the efficiency of the method developed in this
paper. A schematic drawing of the rotor on flexible supports is shown in Fig. 1. The rotor system consists of a flexible
variable section shaft supported at the first and fourth nodes by two bearings and two disks located at the third and fifth
nodes. The rotor shaft is modeled using Timoshenko beam189 model which is a quadratic (3-node) beam element in 3-D,
and in which the gyroscopic and the inertia of rotation effects are taken into account, and the two bearings are modeled
using springs and dashpots. So the rotor model is an asymmetric damped system. As shown in Fig. 2, the diameters of the
variable section shaft are d1 ¼ 0.07 m, d2 ¼ 0.1 m, d3 ¼ 0.12 m and d4 ¼ 0.08 m, respectively, the lengths are L1 ¼ 0.6 m and
L2 ¼ 0.2 m, Young’s module E ¼ 2.1�1011 Pa, density r ¼ 7850 kg/m3 and Poisson’s ratio v ¼ 0.3. The disk 1 and disk 2 have
masses m1 ¼ 20 kg and m2 ¼ 50 kg, moments of inertia J1,0 ¼ 1 kg m2 and J2,0 ¼ 2 kg m2, polar moments of inertia
J1,p ¼ 2 kg m2 and J2,p ¼ 4 kg m2, respectively. Both disks have the same material as the shaft. The spring stiffness
coefficients and the damping coefficients have the following numerical values: Ky1 ¼ Ky2 ¼ 107 N/m, Kz1 ¼ Kz2 ¼ 108 N/m,
Cy1 ¼ Cy2 ¼ 103 N s/m and Cz1 ¼ Cz2 ¼ 2�103 N s/m. The coupling stiffness and damping coefficients of the bearings are
assumed to be negligible, and the damping in the system is only due to the bearings.

The rotor shaft is discretized into 10 shaft elements, each of which has three nodes (two end nodes and one midside
node), and all the shaft elements have the same length L ¼ 0.2 m. When we model the disk 1 at the node 3, two ‘‘special’’
beam188 elements, which are connecting the shaft and disk element, will be automatically created with disk element, at
Fig. 1. A schematic drawing of the rotor with two disks.
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Fig. 2. The geometric dimension of the rotor.

Table 1
The first five eigenvalues and their first order derivatives.

Eigenvalues lI (i ¼ 1, 2, 3, 4, 5) Eigenvalues derivatives l0i ði ¼ 1;2;3;4;5Þ

�8.4343�10�2+1.1255�10+2i �4.7727�10�1+1.4512�10+2i

�1.2584�10+0+2.2968�10+2i �6.2029�10+0+8.6917�10+1i

�2.4071�10+0+3.4216�10+2i 1.1652�10+1
�1.5570�10+2i

�7.4957�10�1+4.7114�10+2i 1.8970�10+0
�7.5338�10+0i

�2.28166�10+0+6.2992�10+2i �4.4362�10+0+5.8252�10+1i

Table 2
The first right eigenvector and its first order derivative.

DOF First right eigenvector u1 First right eigenvector derivative u01

1 2.9140�10�4
�2.9714�10�4i 6.0456�10�4

�6.1991�10�4i

2 �2.8769�10�5
�2.8738�10�5i �5.6383�10�5

�5.6737�10�5i

3 1.9286�10�3+1.9354�10�3i 2.9647�10�3+3.0136�10�3i

4 1.4401�10�3
�1.4209�10�3i 1.9054�10�3

�1.8096�10�3i

..

. ..
. ..

.

97 �3.3594�10�3+3.3727�10�3i �3.01063�10�4+3.5185�10�4i

98 2.4844�10�3+2.4927�10�3i �2.0015�10�3
�1.9626�10�3i

99 �5.8862�10�3
�5.9056�10�3i 5.5933�10�4+4.5476�10�4i

100 �6.4940�10�3+6.4886�10�3i 1.03329�10�3+9.8237�10�4i
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the same time, two nodes a and b are also automatically created at the locations of half disk thickness at both sides of
node 3. At the node 5, the case is same and nodes c and d are automatically created, see Fig. 2. Thus the system has
25(3�10�9+2�2) nodes. Each node has four degrees of freedom: the transverse displacements and the rotations in both
the XY and XZ planes. Therefore, the model has 100 degrees of freedom, and the degrees of freedom are ordered as follows:

q ¼ ½y1; z1; yy1; yz1; . . . ; y25; z25; yy25; yz25�
T

The gyroscopic effect of both disks has also been included in the model, and the rotor speed is chosen to be 7000 rev/min.
The system is modeled using the Rotordynamics module for ANSYS, from which we extract the system matrices and

then compute the sensitivities using our own program. The computation is completed on a PC: Pentium 4, 2.6 GHz CPU,
512 MB RAM. To demonstrate the calculation of the eigensolution derivatives, we choose the design parameter p to be the
shaft diameter d3. Table 1 shows the first five eigenvalues and their first-order derivatives obtained by using the proposed
method.

Tables 2 and 3 show some components of the first right and left eigenvectors and their first-order derivatives computed
by using Eqs. (21) and (26), respectively. Here, we have used the following conditions adopted in Refs. [4,14,15]:

fu1gj ¼ fw1gj and jfu1gjjjfw1gjj ¼max
k
ðjfu1gkjjfw1gkjÞ

by Eq. (12) with p ¼ p0 to determine the right and left eigenvectors u1 and w1 to be differentiated. We may also select an
arbitrary right eigenvector [the corresponding left eigenvector is then determined by Eq. (12) with p ¼ p0] to compute the
derivative regardless of the conditions above.

The computation times for both Guedria et al.’s method in Ref. [25] and the proposed method are compared. Fig. 3
shows the computation times for both methods with respect to the number of the computed eigensolution derivatives. In
Fig. 3, the computation of the eigenpair derivatives has been repeated 10 times and the average computation times are
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Fig. 3. Comparison of CPU times for Guedria et al.’s method and the proposed method.

Table 3
The first left eigenvector and its first order derivative.

DOF First left eigenvector w1 First left eigenvector derivative w01

1 2.9140�10�4
�2.9714�10�4i 3.9870�10�4

�4.1062�10�4i

2 2.8769�10�5+2.8738�10�5i 3.6121�10�5+3.6435�10�5i

3 �1.9286�10�3
�1.9354�10�3i �1.6063�10�3

�1.6464�10�3i

4 1.4401�10�3
�1.4209�10�3i 8.8808�10�4

�8.0878�10�4i

..

. ..
. ..

.

97 �3.3594�10�3+3.3727�10�3i 2.0721�10�3
�2.0236�10�3i

98 �2.4844�10�3
�2.4927�10�3i 3.7512�10�3+3.7235�10�3i

99 5.8862�10�3+5.9056�10�3i �4.7050�10�3
�4.6266�10�3i

100 �6.4940�10�3+6.48836�10�3i 3.5544�10�3
�3.5876�10�3i
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adopted. As we can see in Fig. 3, the CPU time to obtain all the eigensolution derivatives is 2.1119 s for Guedria et al.’s
method and 0.3432 s for the proposed method. Thus Guedria et al.’s method requires a computation time roughly 6.154
times that of the proposed method. For a system with N degrees of freedom, Guedria et al.’s method requires solving a
system of 2N+1 linear equations by performing one LU decomposition of its coefficient matrix, the proposed method needs
to solve two systems of N+1 linear equations by performing only one LU decomposition of the corresponding coefficient
matrix. Therefore, the proposed method is more efficient than Guedria et al.’s method.
6. Conclusions

An efficient algebraic method for the computation of eigensolution derivatives for asymmetric damped systems with
distinct eigenvalues has been proposed. By solving two systems of linear equations, we can obtain the derivatives of the
eigenvalues and their associated right and left eigenvectors directly. One of the coefficient matrices of two systems of linear
equations is the transpose of another and has small dimension. The proposed method maintains N-space without use of
state space equation, requires only the knowledge of the right and left eigenvectors under consideration, gives exact
solution and guarantees numerical stability. Thus the proposed method saves the CPU computation time and the storage
space. In addition, the proposed method can be extended to compute the higher order eigensolution derivatives with less
computing effort. The algorithm is simple and compact and easy to be implemented on computers. A numerical example
has demonstrated the validity of the proposed method.
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